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XlI. 
G 
532 

53m 

Table  (cont.) 

Icosahedral 
H' s H t F 
532 1 • • . C1 
23 5 i 613 Y 
52 6 1 60 Y 
32 10 1 60 Y 
5 12 1 60 Y 
222 15 1 60 Y 
3 20 1 60 Y 
2 30 1 60 Y 
1 60 . . . . . .  Y 

53m 1 . . . . . .  C1 
532 2 • Cz 
m3 5 "'~" 60 Y 
5m 6 T 60 Y 
23 10 1 120 Y× C2 
3m 10 T 60 Y 
3 12 T 60 Y 
52 12 1 120 Yx C2 
5m 12 1 120 Yx (72 
mmm 15 T 60 Y 

20 T 60 Y 
32 20 1 120 Y× C2 
3m 20 1 120 Y× C2 
5 24 1 120 Yx C2 
222 30 1 120 Y x C2 
mm2 30 1 120 Y x C2 
2/m 30 T 60 Y 
3 40 1 120 Yx (72 
2 60 1 120 Yx Cz 
m 60 1 120 Yx C2 
i 60 . . . . . .  Y 
1 120 . . . . . .  Yx 6"2 

d 
1 
2 
12 
9!/6 
11!/5 
14!/4 
19!/3 
29!/2 
59! 

1 
1 
2 
12 
9!/12 
9!/6 
11!f5 
l l ! q 0  
11!110 
14!I4 
19!I3 
19!r6 
19!16 
23 ! I5 
29l r4 
29 ! ¢4 
29! t2 
39!t3 
59! I2 
591 ¢2 
59! 
119! 

Chirality 
G 
G 
G 
G 
G 
G 
G 
G 
G 

N 
C 
N 
N 
C 
N 
N 
C 
C 
N 
N 
C 
C 
C .  
C 
C 
N 
C 
C 
C 
N 
C 

Symbol 
532 
532 (2311) 
532 (5211) 
532 (3211) 
532 (511) 
532 (22211) 
532 (aid 
532 (211) 
532 (1) 

~ m  
~'Jm(532) 
5~m(malT) 
5-Jm(Smli-) 
5--'Jm(2311) 
~--'Jm(3m Ii-) 
53m(5113 
~m(5211) 
5-'3m(5ml 1) 
3-'Jm(mmmlT) 
~m(~lT) 
~m(3211) 
5"Jm(3ml 1) 
53m(511) 
5-3m(22211) 
5~m(mm211) 
"53m(2/ml]') 
5Jm(311) 
~m(211) 
53m(mll) 
5~m(i) 
3-3m(1) 

po in t  g roups  wi th  H ' v ~ H  provide  some asymmetr ic  
subuni ts  wi th  ne ighbors  o f  the same color,  while 
o thers  have  only  differently co lored  neighbors .  Thus,  
such a g roup  does no t  t rea t  an  object 's  subuni ts  con-  
sistently, i f  H ' - ~  H. The  W i t t k e - G a r r i d o  colored  po in t  
groups  are listed in the book ,  Symmetry in Science and 
Art, by S h u b n i k o v  & Kop t s ik  (1974); they  will no t  be 
cons idered  fur ther  here. 
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An Example of the Use of Quartet and Triplet Structure Invariants when Enantiomorph 
Discrimination is Difficult 
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Problems relating to enantiomorph discrimination in the structure determination of the alborixin 
antibiotic (C4sOI4H~,K +) are studied. To select the starting set, quartet structure invariants are used 
to define two orthogonal classes of reflexions, and a variation of the tangent formula refinement using 
the phases of the triplet invariants is described. 

I n t r o d u c t i o n  1970) is the best example,  p rob lems  rare ly  occur  in 
crystal  s t ructure  de te rmina t ion ,  even if  the  n u m b e r  o f  

Since the use and  a u t o m a t i o n  o f m u l t i s o l u t i o n  methods ,  heavy  a toms  in the asymmet r ic  uni t  is r a the r  large (50 
o f  which  M U L T A N  (Germain ,  Ma in  & Wool f son ,  to  80 for  instance) .  The  few failures o f  M U L T A N  
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(certainly less than 1%) are generally due to the nature 
of the space group and even more to a peculiar distri- 
bution of atoms in the unit cell. 

It is well known that it is more difficult to deal with 
some space groups, like P2~, P 1, than others. Troubles 
are partly due to the fact that the enantiomorph cannot 
be fixed with the same confidence as in P2~212~ for 
example. In that case, it is easy, by working only with 
the reflexions of the principal planes, to find one reflex- 
ion which forms with the origin-defining reflexions a 
structure seminvariant, the phase of which is equal 
to + n/2. In P2~, on the other hand, the enantiomorph 
must be defined through the use of an unknown phase 
which is supposed sufficiently different from 0 or n. 
This process does not seem too troublesome for small 
molecules but problems occur when the number of 
atoms is large. Duax & Hauptman (1972) have shown 
that it is then necessary to find, by the use of structure 
invariants, two sets of orthogonal reflexions (i.e. 
reflexions with phases differing by about 90 °) to find 
an enantiomorph unambiguously. 

Another cause of failure of the multisolution tech- 
nique is the fact that tangent-formula refinement is based 
only on the zero mean value of the invariant sine, 
sin (~0n+~px+~pH_~), and ignores completely the cor- 
responding value of the invariant cosine. Thus it tends 
to strengthen the dominant features of a structure. For 
small molecules, it increases the relative weight of 
heavy atoms or of multibound atoms (Busetta, 1973). 
An equivalent result is observed in proteins; if multiple- 
isomorphous-refinement phases are refined by the 
tangent formula, a strengthening of groups with large 
electronic density occurs (haeme, cysteine groups) and 
conversely a weakening of others (alkyl groups) 
(Weinzierl, Eisenberg & Dickerson, 1969). 

In the same way, if a molecule is roughly centrosym- 
metric, tangent-formula refinement will exaggerate this 
feature. This drawback appears for molecules with a 
relatively large number of atoms which present a more 
or less spherical shape. In the molecule we studied (an 
antibiotic ionophore for which we only knew the rough 
chemical composition C48014H84,K+), the general 
centrosymmetric character was increased by a heavy 
atom (K +) at the centre of the molecule (Alleaume, 
Busetta, Farges, Gachon, Kergomard & Staron, 1975). 

The present problem 

This molecule crystallized in the monoclinic space 
group P21. In the different methods used for structure 
determination, we worked with the 406 reflexions with 
E >  1-60; that is a little more than six reflexions per 
atom. The position of the K + ion was determined from 
the Patterson function. 

To determine the structure by the multisolution 
process, it was necessary to refine by the tangent for- 
mula 128 different solutions which may be divided in 
two groups. 

(a) About half of the solutions converge to the same 

result, a solution where all the phases have values e or 
c~+n for a fixed value of k. It is a strongly self-con- 
sistent solution, as proved by the abnormally high 
ABSFOM factor (Germain et al., 1970), 1.55, instead 
of the theoretical expected value 1.0. The ~'0 test is also 
a maximum. On the corresponding E map the position 
of the largest peak actually represents the K ÷ ion (the 
y coordinate of this atom naturally takes different 
values in accordance with the different starting sets). 
Furthermore, about thirty peaks may be seen as well 
as their symmetry mates, with respect to a mirror plane 
perpendicular to the screw axis and passing through 
the K ÷ ion. As we knew nothing about the molecule, 
it was impossible to find a solution from this E map. 

In the following, we shall call such a solution a 
'mirror solution'. If the K atom is arbitrarily situated 
at the level y = 0, the phases of the different reflexions 
have a value near + n/2 if k is odd and near 0 or n if k 
is even. 

As expected, the mirror solution is also obtained by 
refining with the tangent formula the phases (about 30) 
which may be supposed determined by the K atom. 

(b) All the other solutions, for which the ABSFOM 
factor has normal values, provide E maps where the 
position found for the K atom was incompatible with 
the Patterson function. 

The use of quartets to define correctly the enantiomorph 

Thus it seemed that a starting set converging to a mirror 
solution was very close to the correct one, since it was 
the only way to obtain the K + ion in the correct posi- 
tion. The final drawback of phase refinement depended 
on the inability to define correctly the enantiomorph 
from the reflexions used in the starting set. 

If we take into account that about two thirds of the 
406 final phases differ from the mirror solution by less 
than 30 °, it is easy to understand how difficult it is to 
choose correctly a reflexion with a phase which is suf- 
ficiently far from the mirror value to allow unambigu- 
ous enantiomorph definition. 

In Table 1, which reports origins and symbols re- 
quired by the convergence process (Germain et al., 
1970), we see that the final phases of these reflexions 
are not very different from the values corresponding to 
the mirror solution. Now, for correct enantiomorph 
discrimination it is necessary to choose a reflexion, the 
phase of which differs by about 900 from the mirror 
solution. 

For this purpose, we define two orthogonal classes 
of reflexions as described by Duax & Hauptman (1972). 
But, instead of triplet invariants, we examine the phases 
of quartets built on reflexions of the type 02k0 as sug- 
gested by Hauptman (personal communication). 

Of all quartets constructed from 02k0 reflexions we 
consider only those having two reflexions with a com- 
mon index and their symmetrically related ones, for 
example 

(hlkl~), (h,kl,), (h2fd2), (h2k12) 
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Table  1. Origin, the two orthogonal classes and their 
final real phases 

Reflexions defined by ~1 relations Phase used Final phase 

, 12  0 0 0 ° 0 ° 
0 6 180 ° 180 ° 
0 1 0  0 o 0 o 

0 0 12 0 ° 0 ° 
Origin* 1 1 11 270 ° 288 ° 

~; 1 16 270 ° 286 ° 
7 3 12 90 ° 100 ° 

Symbols 6 8 6 0 ° 2 ° 
8 0 5 0 ° 0 ° 
T 10 8 0 ° 7 ° 
3 10 4 180 ° 185 ° 

Class I T 2 2 270 ° 278 ° 
(fixes the enantiomorph) 9 2 3 270 ° 314 ° 

5 2 4 not used 103 ° 
12 2 0 not used 334 ° 

1 2 10 270 ° 344 ° 
ClassII ~ 2 10 180 ° 186 ° 

7 2 8 0 ° 358 ° 
1-1" 2 5 180 ° 235 ° 

3 2 9 0 ° 327 ° 

* The phases of the origin-fixing reflexions were fixed to 
+ 90 ° (k is odd) to obtain the K ÷ ion at the zero level. 

( the sum of  the indices is na tu ra l ly  equal  to zero). 
I f  the phases o f  hzkll and  h2kl2 reflexions are respec- 

t ively ~z and  ~2 the phase  o f  the co r re spond ing  quar te t  
is ~ = 2(~1 - ~2)- 

I f  the reflexions hlklz and  h2kl2 belong to the same 
o r t h o g o n a l i t y  class (i.e. their  phases  differ by 0 ° or  
180°), the invar i an t  phase  of  the quar t e t  is (a=0  °. 

Conversely ,  i f  they  be long  to  different  o r t h o g o n a l  
classes, the inva r i an t  phase  o f  the quar t e t  is ~0 = 180 °. 

H a u p t m a n  (1974a,b) po in ted  out  tha t  the  inva r i an t  
phase  o f  the quar t e t  could  be es t imated  f rom the modu l i  
o f  the no rma l i zed  s t ructure  fac tors  Ehl+hs,0. q+~2 and  

Elq - h 2 ,  O, l l - - I  2 " 

if  bo th  are large, 9 is p robab ly  zero;  

if  bo th  are weak,  tp is p r o b a b l y  equal  to  180 °. 

Table  2 i l lustrates  how we separa ted  nine  (h2l) 
reflexions in to  two o r t h o g o n a l  classes, by using the 
quar te t s  bui l t  f rom the  040 reflexion, assuming  tha t  the 
T22 reflexion belongs  to the  first class. F o r  seven of  
those  reflexions, symbol ic  addi t ion ,  appl ied  to the 
s tar t ing set p rov ided  by the convergence  process, had  
assigned symbols  co r r e spond ing  to two different  sets 
o f  cor re la t ion ,  compa t ib l e  wi th  the existence o f  two 
o r t h o g o n a l  classes. We preferred,  then,  to  discard the 
o ther  two reflexions in the s tar t ing set. The  relat ive 
magni tudes  of  the s t ructure  fac tor  c o m p u t e d  f rom the 
K + ion only  al low us to assign a 0 or  n phase  to reflex- 
ions o f  class II.  Then  the  reflexions o f  class I, wi th  
phases  nea r  _+ n/2, can be used to define the enant io-  
m o r p h  correct ly.  I f  we examine  the final t rue phases  of  
those  nine reflexions we see tha t  the phase  ass ignment  
of  the last  four  reflexions is no t  qui te  sat isfactory.  
However ,  the new s tar t ing  set, so obta ined ,  was un- 
doub ted ly  be t te r  t han  the first one ;  nevertheless tan-  
gen t - fo rmula  ref inement  led again  to a mi r ro r  so lu t ion .  

Table  2. Determination of two orthogonal classes of reflexions, us&g quartets built from the 040 reflexion 

For each quartet (in this case two reflexions and their symmetry-related ones) we used Ehl +hz.O.q +12 and Ehl-h2.0.q-t2. Some of 
those E values are unknown and denoted by an interrogation mark. 

Class I (+__ n/2) 
(1) 1" 2 2 
(2) 9 2 3 II to (1) tp=0 E1=2"75 

E2=3"10 

(4) 5 2 4 II to (1) Ex=2.54 E2=0.84 
.1_ to (3) Ez=1"24 E2=0.35 

(6) 12 2 0 II to (1) E t=  1"98 E2= 1"68 

(8) 1 2 10 II to class I 
(1) E~=2.18 E2=0.64 
presumption (4) Ez=2"94 

(6) El = 1.67 
presumption 2_ to class II 
(3) E~=0-58 E22 
(5) Ez = 0"69 E2 ? 
(7) Et=0"55 Es? 

E2? 
E~? 

Class U (o or n) 

(3) 3 2 10 I to (2) E1=0-25 E2=0"57 
(1) Ez=0'53 E2=0"17 

(5) 7 2 8 I to (1) Ez=0"47 E2=0"38 
(4) E1=0"39 E2=0"56 

presumption II to (3) E~=2.34 Es? 

(7) IT 2 5 _1_ t o ( l )  Ez=0"57 /72=0 
presumption 2_ to (2) Et = 0.17 E2 ? 

(4) Et=0.34 E2? 
(6) Ez=0"04 Es? 

presumption I1 to (5) E t=  1.49 Es? 
(3) El = 2.75 E2 ? 

(9) 3 2 9  presumption I1 to (3) E1=3"10 E2? 
presumption &to (2) Ez=0"38 E2? 

(8) Et = 0.04 E2 ? 
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How to introduce the phase of triplet invariants 
in a tangent refinement 

Close examination of the refinement process showed 
that even if a phase was initially computed far from the 
corresponding value for the mirror solution, it rapidly 
converged (generally only one or two cycles of tangent 
refinement) towards the critical mirror-solution value. 
A posteriori, this result is not surprising if we take into 
account the fact that two thirds of the final phases are 
near the mirror solution and the strong internal con- 
sistency of such a solution. 

To converge to the correct solution it seems neces- 
sary to introduce into the refinement process the phases 
of the triplet structure invariants computed by the 
modified triple-product formula (Hauptman, Hancock, 
Fisher & Norton, 1969). The least-squares refinement 
proposed by these authors may be used only to generate 
the first phases, but it is too time-consuming to be used 
in the complete refinement of all phases which are re- 
quired for crystal structure determination. 

The very fast classical refinement by tangent formula 
is based on the relation: 

Wn, K sin (~0n+q~K+q~n_~)=0. 
K 

This statistical relation is correct only if the number 
of K terms is sufficiently large; in fact, a single in- 
variant phase q~+q~K+~H-~ is generally equal to a 
non-zero value aH, K and it would better to base the 
refinement on the equation: 

WH, r sin (q~+q~K+q~n_K--~.,K)=0. 
K' 

Though it is possible to compute, from the modified 
triple product formula for instance, the modulus 
[an. ~l of the invariant phase, it is impossible to obtain 
its sign. 

As pointed out previously, the phases computed in 
the first cycle, without any refinement, were probably 
closer to the true phases than those we get from the 
mirror solution~ Then, if the classical tangent formula 
provides a phase q~ for the H reflexion we may sup- 
pose that the sum ~r  + ~x + fPn- K = C~. K is not far from 
the correct invariant phase, the modulus of which is 
theoretically available (lan.~[); it seems reasonable to 
assume that the true invariant is S(a~.K)× [an.K[ and 
then a new refinement process may be based on the 
equation: 

WH.~: sin (~0n+ ~0K+ ~0,-K--S(~.K) X I~,~1)=0. 
K 

• That is to say, in a more classical form: 

E Wn, K sin (q~K+q~n-K--S(~,K) × l~n, KI) 
K 

tg ~0n= y WH,~ cos (q~K+~On-K--S(~'n.x)× Jan, x)" 
K 

In fact we applied the a posteriori computed sign 
s ( ~ ,  K) to the a priori computed modulus I~n, KI in the 
two following cases: 

if Ac~' = 190°- [c~, Kll < 60 °, 
ifAe' > 60 but remains lower than A~= 190 ° -  I~H,,,II • 

Then, as in the classical tangent formula, we use a 
weight W.. ~=AH, ~ for such an invariant relation. 

However, when the sign of the invariant phase could 
not be determined we used the information given by 
the structure invariant but with the classical form 
sin (~0n + (p~ + q~n_K) = 0, with the modified weight 
WH,~=A'H,K which we introduced (Busetta & Com- 
berton, 1974) to take into account the discrepancy of 
the considered invariant phase from its supposed zero 
value. 

Finally, forecasting the existence of a majority of 
phases near the mirror solution, we tried to favour the 
enantiomorph discrimination by multiplying the 
previously defined weight by an arbitrary fac tor fequal  
to one if A~ > 60 ° and to ( 3 -  2Ac~/90 °) otherwise. 

After each cycle of refinement the sign assigned to 
each invariant phase was checked. Although there was 
usually no change in the sign assigned to an invariant 
phase near 90 °, the signs of phases near 0 ° or 180 ° were 
more doubtful, especially in the first cycles of refinement. 
After 12 cycles of refinement no further change in the 
signs of the invariant phases was observed, so we 
stopped. 

On the corresponding E map it was possible to iden- 
tify 33 atoms of the desired structure (Fig. 1). If, in 
some cases, there remained two symmetrical peaks on 
each side of the pseudo mirror passing through the 
K ÷ ion, the different weights of the peaks were always 
sufficient to provide a correct and unambiguous posi- 
tion for the atom. 

Fig. 1. The alborixin structure (Alleaume et aL, 1975). The 
atoms located by the direct method are represented by bold 
circles, full above and dashed below the K ÷ ion (the double 
circle). The enantiomorph used during the structure deter- 
mination is the inverse of the real absolute configuration. 
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Three successive computa t ions  of  structure factors 
and Fourier  maps allowed us to find all the missing 
atoms. 

The mean error between the phases computed by the 
direct method and their true final values for the 406 

Table 3. Comparison of refined and real phases of the 
four first planes 

We report here only the reflexions of which the real phase 
differs from the mirror solution by more than 45 ° . 

Equivalent 
mirror 

Real ~ Computed ~ solution 
3 1 12 26 ° 71 ° 90 ° 

12 1 11 48 56 90 
8 1 4 54 67 90 
4 1 4 330 308 270 
2 1 0 54 34 90 
T 2 2 278 309 360 
4 2 3 76 102 180 
5 2 4 103 107 180 
T 2 5 97 45 0 

17- 2 5 235 193 180 
3 2 10 66 102 180 
2 2 11 63 20 0 
7 2 11 49 -10  0 
T 2 15 121 134 180 

3 10 331 324 270 
7 3 7 41 42 90 

3 6 323 282 270 
1--0 3 6 200 232 270 
IT 3 6 29 86 90 
]-]" 4 5 134 135 180 

3 4 10 91 105 180 
4 4 10 305 334 360 

4 12 127 151 180 
4 12 105 153 180 

2 4 13 94 137 180 
1 4 13 307 342 360 

reflexions is <lA~01> 17"9 °. But as we had already 
noticed, 275 phases differ f rom the mirror  solution by 
less than  30°; therefore we prefer to illustrate the ef- 
fectiveness of  the refinement process described above 
by comparing only the phases which actually differ 
f rom the mirror  solution by more than  30 ° with those 
computed by the direct method.  In Table 3, we report  
the 26 corresponding phases with k ranging from 1 to 4. 

Finally we introduced in the classical refinement 
process, the 406 true final phases obtained for the 
completely refined structure ( R =  0.07) and once more  
we obtained the mirror  solution. 

The au thor  thanks  Professor H. H a up t ma n  for 
valuable discussions and critical reading of  this paper. 
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